An oligodendrocyte-specific zinc-finger transcription regulator cooperates with Olig2 to promote oligodendrocyte differentiation.

نویسندگان

  • Shu-Zong Wang
  • Jennifer Dulin
  • Heng Wu
  • Edward Hurlock
  • Sang-Eun Lee
  • Kyle Jansson
  • Q Richard Lu
چکیده

Molecular mechanisms that control oligodendrocyte myelination during mammalian central nervous system (CNS) development are poorly understood. In this study, we identified Zfp488, an oligodendrocyte-specific zinc-finger transcription regulator, by screening for genes downregulated in the optic nerves of Olig1-null mice. The predicted primary structure of Zfp488 is evolutionarily conserved in vertebrates and invertebrates. In the developing CNS, Zfp488 is specifically expressed in oligodendrocytes but not their precursors. Its expression increases in parallel with that of major myelin genes Mbp and Plp1. Zfp488 is a nuclear protein that possesses transcriptional repression activity. In the developing chick neural tube, Zfp488 can promote oligodendrocyte precursor formation upon Notch activation. In addition, Zfp488 can interact and cooperate with the bHLH transcription factor Olig2 to promote precocious and ectopic oligodendrocyte differentiation. Furthermore, knockdown of Zfp488 via RNAi in an oligodendroglial cell line leads to the downregulation of myelin gene expression. Taken together, these data suggest that Zfp488 functions as an oligodendrocyte-specific transcription co-regulator important for oligodendrocyte maturation and that zinc-finger/bHLH cooperation can serve as a mechanism for oligodendroglial differentiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zfp488 promotes oligodendrocyte differentiation of neural progenitor cells in adult mice after demyelination

Basic helix-loop-helix transcription factors Olig1 and Olig2 critically regulate oligodendrocyte development. Initially identified as a downstream effector of Olig1, an oligodendrocyte-specific zinc finger transcription repressor, Zfp488, cooperates with Olig2 function. Although Zfp488 is required for oligodendrocyte precursor formation and differentiation during embryonic development, its role...

متن کامل

Olig2 Targets Chromatin Remodelers to Enhancers to Initiate Oligodendrocyte Differentiation

Establishment of oligodendrocyte identity is crucial for subsequent events of myelination in the CNS. Here, we demonstrate that activation of ATP-dependent SWI/SNF chromatin-remodeling enzyme Smarca4/Brg1 at the differentiation onset is necessary and sufficient to initiate and promote oligodendrocyte lineage progression and maturation. Genome-wide multistage studies by ChIP-seq reveal that olig...

متن کامل

The enhancing effect of electromagnetic field on the expression of Oligodendrocyte transcription factor 1 and 2 (Olig1/2) in the mice cerebral cortex

Olig1 and Olig2, two transcription factors, play regulatory function in the differentiation and specification of oligodendrocyte progenitor cells (OPCs). In this study the effects of electromagnetic fields (EMF) on total protein concentration ( TPC ) and Olig1 and Olig2 expression in the cerebral cortex of mouse was examined. Twenty-one Balb/c mice were separated into three groups: control, EMF...

متن کامل

Olig1 and Olig2 promote oligodendrocyte differentiation of neural stem cells in adult mice injured by EAE

Investigating neural stem cell plasticity in the hippocampal niche, we demonstrate that retroviral forced expression of Mash1 (Mammalian Achaete-Scute Homolog 1), Olig1 (Oligodendrocyte transcription factor 1), and Olig2 (Oligodendrocyte transcription factor 2) genes, transcription factors involved in enhanced oligodendrogenesis, can contribute to directing the differentiation of adult subventr...

متن کامل

Dual regulatory switch through interactions of Tcf7l2/Tcf4 with stage-specific partners propels oligodendroglial maturation.

Constitutive activation of Wnt/β-catenin inhibits oligodendrocyte myelination. Tcf7l2/Tcf4, a β-catenin transcriptional partner, is required for oligodendrocyte differentiation. How Tcf7l2 modifies β-catenin signalling and controls myelination remains elusive. Here we define a stage-specific Tcf7l2-regulated transcriptional circuitry in initiating and sustaining oligodendrocyte differentiation....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 133 17  شماره 

صفحات  -

تاریخ انتشار 2006